Why is TbFree Poisoning Kea Habitat?

TbFree, formerly the Animal Health Board (AHB), explains:

Despite having a very low human health risk now, bovine TB is still regarded as an unwanted disease in New Zealand because of the negative consumer perceptions and adverse market reactions it could generate. High levels of TB would also cause significant production losses for New Zealand farmers….

“Controlling possums helps to minimise the risk of the disease spreading within the possum population and to livestock.  We know if we can keep the numbers low enough for long enough over large areas, we can eventually eradicate TB…

“Currently biodegradeable 1080 is the only control method that can be applied aerially. This means it can be used for quick and effective control in hard to access areas, or large tracts of land, where ground control is impractical” – Tb free website 2014


 

What do science and history say?

The Animal Health Board, now called TBFree, has no rational basis for using aerial 1080 poison to kill possums.

This was highlighted when the AHB applied in 2007 to continue aerial 1080 poisoning operations, to the Environmental Risk Management Authority:

“No research is cited in the Application that studies the dollar losses occurring from the loss of one or more export markets..Clough & Nixon (2000) conclude…a trade ban would be difficult to sustain under current international trade rules, the risk is very small and the expected value of an avoided trade ban is modest…

 

“The Application…fails to demonstrate evidence or understanding of economic research on use of 1080, pest control or Tb…this section of the application is unsophisticated, uses crude approaches to estimate even the largest benefits and costs associated with the use of 1080, lacks awareness of many pertinent economic research techniques, seems unaware of almost all relevant economic research.” – Professor Ross Cullen, Economic Expert advising the Environmental Risk Management Authority (ERMA), 2007

 

“around 3% of all human Tb cases are M. bovis…The Ministry of Health attributes these low rates to herd testing and the widespread pasteurisation of milk…

 

 “even if bovine Tb were prevalent in cattle it would not present a real risk to human health…

 

 ”We recommend that in making its decisions, ERMA de-emphasise the importance of bovine Tb”. – NZ Health experts advising ERMA, 2007

 

the applicants have provided little factual support to demonstrate efficacy of aerial compared with ground application of 1080 as it relates to possums and Tb control…

 “the relative contributions of possums and other wildlife (particularly ferrets) to Tb infection of cattle and deer herds are not clearly defined at this time.” – ERMA Agency, 2007

 

“there is no evidence to support the suggestion that trade is significantly reduced by not having bovine Tb-free status.” – ERMA Committee, 2007

 

Localised, farm margin harvesting of all Tb-carrying species would be far more rational than broadscale 1080 poisoning, because

  • Tuberculous possums are clustered in relatively small, stationary “hotspots”
  • possums (both diseased and healthy) living in forests were found to only travel occasionally onto farm pastures, and none were found to move more than 1300m

“Tuberculosis possums were clustered in “hotspots” and identification and targeting of these high prevalence areas would make control of tuberculosis in wildlife more effective” – S. Norton et al., NZ Veterinary Journal, 2005

 “The disease shows remarkable spatial clustering…that can persist over extended periods of time…despite intensive possum control efforts…methods for the future may include…identification of spatial determinants of “hotspots” to allow more targeted population control” – R. Jackson, NZ Veterinary Journal, 2002

“operations to reduce possum numbers in Tb-problem areas would need to encompass at least 1 km of forest adjacent to pasture….

“Where the problem is long-standing and the incidence of Tb in possums is high at the forest/pasture margin (>10%), infection may already be present in the deep forest (Cook & Coleman, 1975), and control may be required further (1-2km) into forest.” – W. Green & J. Coleman, NZ J. Ecology, 1986

  • Tb is found in a wide range of wildlife, not just possums. The role of other wildlife in spreading and maintaining Tb infection is not very well known.

 

“…some deer species and ferrets may act as vectors of the disease, but their role in transmitting TB to livestock is unclear…

 “Hedgehogs, pigs, cats, sheep and goats are now considered to be amplifier hosts, and spread the disease to other species only when inspected or their carcass scavenged.

 “Tuberculosis has been recorded in a small number of stoats …Disease prevalences are unknown, and estimates of them are difficult, due to the rapid turnover of stoat populations and difficulty in trapping them…

“Tuberculosis has been identified in a limited number of feral goat populations, but none of them have been studied in detail.” –  J. Coleman & M. Cooke, Tuberculosis, 2001

 

After a TbFree aerial poisoning operation, the carcasses of all animals are left for scavengers. This includes rats, stoats, ferrets and pigs, which can all catch and spread Tb:

 

“In endemic areas, rats have ample opportunity to inhale or ingest M. Bovis bacilli during their scavenging of infected carrion, and of transmitting Tb to other species when scavenged themselves.” –  J. Coleman & M. Cooke, Tuberculosis, 2001

Feral ferrets (Mustela furo) and stoats (M. Erminea) are abundant in many regions of the country and are highly susceptible to infection with M. Bovis…the disease appears to be maintained by consumption of tuberculous carrion” – R. Jackson, NZ Veterinary Journal, 2002

“The interaction between pest species is poorly understood. For example, rodent numbers sometimes increase following possum control operations, which may lead to an increase in stoat populations” – G. Nugent et al., Kararehe Kino Vertebrate Pest Research, 2008

 

“our analysis which showed no decrease in ferret abundance at sites that have been subject to possum control” – S. Norton et al., NZ Veterinary Journal, 2005

 

“pathology indicates most pigs are infected by feeding on tuberculosis carrion…

 “Pigs are wide ranging and often forage in large family groups so whole-group feeding on a single carcass may often amplify the number of infected animals.” – T. Ryan et al., Veterinary Microbiology, 2006

 

Recent documented evidence points to human error in spreading and monitoring Tb:

 

“Twelve percent of dairy herds have 500 or more animals…High prevalence breakdowns in such herds have occurred…Movements of animals in-and-out of such herds is a plausible cause, but “stress” leading to immune dysfunction probably also contributes.”

 

“In terms of TB in Northland, there are currently seven herds…which have tested positive. A high level of TB infection has been found in young stock and there has been movement of infected calves traced to a farm south of Kaitaia…response by TBfree NZ has included…wildlife surveys to assess infection in wild animals such as possums and wild pigs. To date, 47 pigs and 340 possums have been sampled from the Awanui area and no TB infection has been found in wild animals…TBfree NZ are still investigating…findings so far show that dairy cattle sales and stock movements are very complex”

 

“Dispose of dead stock properly…don’t allow wild animals such as pigs to access open offal pits – this could result in TB transfer to wildlife”

 

“Infected herds by type at July 2013:..These figures represent a significant increase in infected herds in the North Island but also a small increase in the South Island.”

 

“Compliance: at the time of this report there are 16 cattle herds 180+ days overdue for testing. This equates to 15 per cent of the national total for overdue tests. A number of these herd owners have been in discussions with the North Island Compliance Manager as they are unable to muster their stock or they have become feral…Unregistered herds are also of concern in the Northland Region.” – N. MacMillian, Northland Regional Council Environmental Management Committee Meeting Tabled Item 30/07/2014

 

“Tb Free New Zealand says recent cases of the disease in two herds in the Rangitata/Orari area of South Canterbury were a West Coast strain…

 This confirms that the herds have become infected from bought-in TB infected cattle…

 A wildlife “survey” in the area caught 996 possums, all of which tested free of the disease.” –  A. Swallow, Rural News 2013

 

“With animal movement, in a study of cattle and deer in the Waikato district, it was found that only 10% of cattle herds were “closed”…

 “Models of this “population” suggested that the “intensity of disease surveillance” has profound effects on the ability to reduce the number of infected herds (Barlow et al., 1998). As a result, surveillance intensity was increased, and there was a rapid reduction in herd prevalence…

 “Accurately identifying all infected and non-infected animals is challenging…

 “With M. Bovis infection, particular problems are an extended pre-clinical period, some animals being unable to mount a normal immune response, and waning of cellular immunity after prolonged infection” – T. Ryan et al., Veterinary Microbiology, 2006

 

Whereas it is not even known how a possum would give Tb to a cow!

 “The mode of transmission between possums and livestock is poorly understood and difficult to study. However, dominant cattle and deer have been observed to approach semi-sedated (“sick”) possums, and sniff and mouth them. – J. Coleman & M. Cooke, Tuberculosis, 2001

 “Possum-to-cattle transmission is thought to occur when cattle investigate disorientated, diseased possums wandering in pastures close to their bush habitats (R.S. Morris, pers. Commun.) – N. Barlow, Trends in Microbiology, 1985

 

Final word from science and history- advice unheeded      

 

“This Council recognises the seriousness of outbreaks of tuberculosis in cattle, but urges that the enormous injection of funds into eradication programmes and the large expenditure on control programmes be matched by the provision of adequate resources for further research…

 

“the cumulative evidence of bird deaths is sufficiently reliable to indicate that there are significant effects on non-target organisms…

 

“the Council recommends that methods be developed for the disposal of unused baits and poisoned carcasses and that the Crown be bound…

 

“The Council recommends that the use of 1080 should not be permitted in any significant wildlife area or reserve and especially in takahe/kakapo areas, forest sanctuaries, biological reserves and national parks…

 

“this Council recommends that appropriate preliminary justification and thorough monitoring processes be a pre-requisite for further 1080 operations…

 

“control operations utilising 1080 may induce bait shyness, are only temporarily effective, and often create favourable conditions for noxious animals by reducing competition, and releasing nesting sites and feeding areas” –  NZ Nature Conservation Council, 1977

Why is the NZ Government poisoning Kea?

The Department of Conservation (DoC) explains:

“High levels of seed production (‘mast’) in our beech forests is expected to trigger a rodent and stoat explosion later this year. When seed supplies run out these predators will turn on endangered birds…

“A widespread rodent and stoat plague in South Island beech forests would put some of our most threatened bird species such as yellowhead/mōhua and orange-fronted parakeet/kākāriki karanga at serious risk of extinction.” –  DoC website, 2014


What do Science and History say?

Beech masting is natural, temporary, and its effects are not well understood or predictable.

“The density index for R. rattus increased…after the 1976 seedfall, but not after that of 1979.” – C. King, J. Anim. Ecology, 1983

 “A prey switch to ground weta occurred as mice numbers declined, and not to birds, as is often expected or feared by conservation managers.” – D. Smith & I. Jamieson, DoC Science Internal Series, 2003

 “Fluctuations in trap success suggest that stoats become very numerous in the summer and autumn following heavy seedfall, but remain at low abundance in the intervening times.” – N. Alterio et al. NZ J. Ecology, 1999

 “increases in not only mouse, but also bird (and possibly invertebrate) densities may contribute to the high productivity of stoats in the year following a Nothofagus seedfall…

 “When we compared stoat diet in the high-density year with that in the following two years, there were no significant differences in the frequencies of occurrence of birds or invertebrates in stoat guts…

 “Stoats did not eat birds less frequently when mice were abundant, a result also found by King (1983)…

 “Mouse and stoat numbers can rise after poor mast years…so assessing potential impacts on threatened species may require a better predictor than heavy beech seeding alone” – E. Murphy & J. Dowding, NZ J. Ecology, 1995

 “It is likely that seedfall is only one of the factors regulating ship rat numbers in beech forest…

“ship rats were not an important food for stoats in the Hollyford and Eglinton Valleys even in years of relatively high rat abundance (King & Moller 1997).” – B. Studholme, Conservation Advisory Notes, 2000

“Nest predation did not increase in the breeding season following full beech mast-seeding in 1995, when stoat (Mustela erminea) numbers were beginning to rise” – G. Elliot & J. Kemp, WWF Final Report, 1999

 “…satiation of predators and consequent reduced predation rates on birds is now thought to occasionally occur when mice reach extremely high densities (C.M. King, pers. comm.).” – D. Kelly et al., NZ J. Ecology 2005


Science and History show that:

 1080 Poison is Dangerous

 “A number of wild birds and some domestic animals were accidentally killed during the tests…1080 is too dangerous for general use” – S. Barnett & M. Spencer, Journal of Hygiene, 1949


 

 1080 Poison is Persistent

 “in dry or cold conditions it could take months to break down…

 the applicants…clarified that the breakdown of 1080 in the aquatic environment would be better described as dilution” – Environmental Risk Management Authority, 2007


 

 1080 Poison is Ill-advised

 “It is not advisable to expose nationally critical or endangered birds to aerial 1080 baiting, unless evidence from trials or other sources shows the birds do not consume non-toxic baits…

 “we are unaware of any observational studies that have examined the impact of aerial 1080 application on rock wrens…

 “Although the presence and protection of remnant mohua populations is often one of the drivers for aerial distribution of 1080 baits in South Island beech forests…the fate of individual mohua following such operations remains unknown.” – C. Veltman et al., NZ J. Ecology, 2014

 “Kakariki (parakeet)…Dead chicks in a failed nest in the Hurunui Valley operation contained 1080 residues…two unmonitored Kakariki were found dead with 1080 residues in their tissues.” – TBFree New Zealand AEE, 2014

 “The risk of toxin-related mortality is yet to be quantified at the population level for 11 native bird species that are known to have died” – T. Green et al., NZ J. Ecology, 2013


 

 1080 Poison Causes Pest Plagues…..are these the real reason for Doc’s current “Battle for the Birds”?

“ship rat abundance indices increased nearly fivefold after possum control and remained high for up to 6 years…

 “the typical outcome for most pulsed possum control is an uncontrolled ship rat population in the presence of a low-density possum population for most of the 3-7 year cycle.” – P. Sweeetapple & G. Nugent, NZ J. Ecology, 2007

“Intermittent control of possums and ship rats may have the nett effect of increasing ship rats for most of the time.” – J. Innes et al., NZ J Ecology 2010

The mouse index declined in the non-treatment area (30 to 14%), but increased in the treatment area (23 to 30%).” – DoC Rare BitsNewsletter, 2004

“mice are so far the Achilles heel of many programmes, with mouse numbers irrupting” – D. Armstrong et al., NZ J. Ecology 2010

“mice rapidly increased to be more abundant than they were prior to the control operation compared with sites not sown with 1080 baits. Now, 18 months after the initial 1080 operation, possum numbers remain low but rat numbers have increased to higher levels than prior to baiting and compared with sites that weren’t poisoned.” – G. Nugent et al., Kararehe Kino Vertebrate Pest Research, 2008

Because control operations utilising 1080 may induce bait shyness, are only temporarily effective, and often create favourable conditions for noxious animals by reducing competition, and releasing nesting sites and feeding area this Council belives that alternative means of dealing with problem animals should be investigated” – NZ Nature Conservation Council, 1977


 

 1080 can increase predation on birds

“stoats are likely to have the greatest effect on birds after successful 1080 poison operations” – E. Murphy et al., NZ J. Ecology, 1998

“The reduction in rats, the main prey of stoats, may lead to an increase in stoat predations on birds…

 …The abundance of introduced birds is more likely to form the bulk of stoat prey until rats become more plentiful again” – DoC Operational Report, Otira 2011

“A dramatic increase in fledgling mortality has been noted coinciding with a change to the pest control regime…eleven of fourteen fledglings have died. Nine of these were probably (some certainly) killed by stoats…The pest control regime was an aerial 1080 pollard operation in October.” – DoC Rare Bits Newsletter, 2002

“Four months after an effective possum and rat knock-down by a 20,000-ha aerial 1080 operation over Tongariro Forest, stoats reappeared in the centre of the forest and began killing kiwi chicks. So far five of the 11 chicks have been predated, and all in the centre of the treatment area” – DoC Rare Bits Newsletter, 2002

“The interaction between pest species is poorly understood. For example, rodent numbers sometimes increase following possum control operations, which may lead to an increase in stoat populations and a consequent decrease (through predation) of some bird populations… – G. Nugent et al., Kararehe Kino Vertebrate Pest Research, 2008


 

 1080 is being applied again and again in Kea habitat

“Prior to each of the four occasions (2006, 2008, 2009, and 2012) that resource consent needed to be exercised, proposed operations were publicly notified” – DoC Operational Report, Arthurs Pass 2013

“We must effectively control the pests that threaten our forests, but 1080 poison should be a measure of last resort.” – NZ Green Party website, 2014


 

 Killing stoats and possums will not help kea

“Kea nests appear to be relatively immune to predation from introduced mammals…Our results agree with a previous study of kea nesting at Arthur’s Pass, where no evidence of significant nest predation was found (Jackson 1963).” – G. Elliot & J. Kemp, WWF Final Report, 1999

“During the last hundred years Keas have shared their environment with rats Rattus spp. and stoats Mustela erminea. I have found no evidence of these animals affecting Keas…

 “Twice I have found a dead possum Trichosaurus vulpecula within five yards of a Kea nest. The opossum frequently chooses holes similar to a kea nest as a den and perhaps these two opossums prospected the Kea nests.” – J. Jackson, Notornis 16, 1969

 We found 44 nests in 25 sites and were able to assess the nesting success of 40 of them…The only nest failure we can confidently attribute to a specific predator was caused by a stoat”

 G. Elliot & J. Kemp, Department of Conservation Internal Science Series, 2004

(N.b. monitoring nests is likely to attract predators)


IF it was advisable for humans to interfere during a mast year, this could be done WITHOUT aerial 1080 poisoning:

“Several studies on other forest birds have found that trapping can reduce the high predation pressure during stoat irruptions…a very intensive trapping programme significantly reduced stoat predation on breeding mohua during a stoat irruption.” – D. Kelly et al., NZ J. Ecology 2005

“Mustelid tracking rates were again below 5%…highlighting the ability of the form of trapping programme being used to maintain pressure on an invasive predator population” – G. Harper et al., DoC RNRP Annual Report, 2013

 “Surprisingly, the trapping outperformed the poisoning method, reducing rat tracking indices much faster and keeping them at very low levels for longer than the poisoning method.” – DoC Rare Bits Newsletter, 2002


 

Please help save the kea and other precious native creatures from 1080 poison.

“What a poor, curtailed, mutilated sterile world we threaten our descendants with! Man and the rat sharing it – fit mates in many ways – in their desperate, deplorable, gnawing energy, in their ruthless destruction of every obstacle.” – Guthrie-Smith 1936

Cited in D. Towns et al, Biological Invasions, 2006

homepage-link-petition

At least 65 dogs in a year poisoned by 1080 in New Zealand

PUBLISHED BY SCOOP INDEPENDENT NEWS

Research by the National Poisons Centre and the Otago University’s Pharmacy School which was presented at an International Poisons Congress in 2008 found that dogs across New Zealand are at extreme risk of poisoning from 1080(1).

The researchers carried out a postal survey of 125 randomly-selected veterinarians. Fifty-two vets responded and within their practices over a one year period, 65 dogs poisoned by 1080 had been dealt with. Three of the 52 respondents had each treated 10 cases. Only 25% of the treated dogs survived (only those that had not shown clinical signs of poisoning before treatment).

The 65 dogs will be a fraction of actual cases dealt with because not all vets in the country were involved in the survey, and not all dogs poisoned with 1080 will get to the vet. The researchers told the conference that in New Zealand “Poisoning of dogs by 1080 is widespread with no defined management in place.”

This finding contrasts sharply with what our Environmental Risk Management Authority (ERMA) claimed in its reassessment of 1080 poison in 2007. According to ERMA “Controls in place to ensure dogs are not exposed are adequate” (2)

It also makes nonsense of the claim made this June by our Parliamentary Commissioner for the Environment (Dr Jan Wright) that only 8 dogs have been reported killed in New Zealand by 1080 poison since 2007.  Dr Wright quoted only the number of dogs in incidents reported to ERMA about 1080 operations. The “8 dogs” figure is clearly a gross misrepresentation of the actual number of dogs killed. This is just one of a large number of misleading statements in her report on 1080, which is heavily biased towards its use, as was the ERMA reassessment. (3)

Unfortunately for dogs and their owners, it is likely that the real number of deaths has actually increased in recent years. This is because the area over which 1080 poison is being spread has been increasing; a significant increase in its use (proposed by the Department of Conservation (DoC) and the Animal Health Board (AHB)) was a major reason for ERMA’s re-assessment of 1080 (Committee Decision, page 15).

Furthermore, the controls outlined by ERMA in 2007 require that signs warning of 1080 poison must be removed, after remaining in place for a minimum of six months (or less if toxin removal or testing indicates the area is safe)(4). This control was imposed without any knowledge of how long 1080 remains a risk in carcasses, although it was admitted that “1080 residues in the carcasses of poisoned possums may be very slow to break down” (5).

ERMA stated in its assessment “There is limited information available on the degradation of 1080 in animal carcasses..It is clear that 1080 residues remain in the guts of dead animals for prolonged periods (at least 75 days under cool winter conditions..) and only degrade slowly” (6). Furthermore the low rate of degradation “may be a function of low pH in the gut, absence of bacteria able to degrade 1080, toxicity to gut bacteria, low levels of..invertebrate activity, accompanied by cool temperatures at the time of 1080 bait distribution.” (7)

This possible effect of the toxin helping to preserve the carcass has not been taken into account by DoC when drawing up its operating procedures. For some years now DoC has monitored carcass breakdown at poisoned sites but these carcasses “can be sourced from anywhere” and are not required to be poisoned (8).  According to ERMA, the AHB (the biggest user of 1080 in NZ) and other users merely assume that six months after the operation the signs can come down.

Carcasses of 1080-poisoned animals are a huge risk to dogs because of the persistence of the poison and because dogs are so susceptible to it. Just 1.75 mg of 1080 poison will kill a 25 kg dog, and enough poison is spread aerially per hectare to kill over 2,500 dogs (Table 1) (and 125 times more poison than required per possum). 1080 poison concentrations in possum gut contents were 30.6 mg/kg after 25 days and 4.9 mg/kg after 75 days in one study (9). In another study 1080-poisoned rabbit carcasses became more toxic as they aged, possibly because of dehydration (10).

Table 1: 1080 application rate and killing power per hectare by species

* for 0.15% 1080/Kg applied at 3 kg/ha (4.5 gms/ha or one level teaspoon). For lower concentrations and sowing rates figures will be
proportionately lower.

 

Species

LD50 mg/kg body wt

Average species wt (kg)

LD50 (mg) for this weight

mg 1080  /ha*

LD50 doses/ha

Dogs

0.07

25

1.75

4,500

2,571

Sheep

0.4

35

14

4,500

321

Deer

0.5

80

40

4,500

113

Possums

1.2

3

3.6

4,500

1,250

Humans

2.5

80

200

4,500

22.5

Weka

8.0

1

8

4,500

563

Ducks

9.0

1.5

13.5

4,500

333

Rats

1.2

0.14

0.168

4,500

26,786

LD50 = dose per kg body weight to have a 50% kill risk

 

Source: Dr Hugh Barr, NZ Wildlands Biodiversity Management Society Inc.

Dogs exposed to less than lethal doses of 1080 are likely to suffer damage to the heart, other organs and reproductive tissues, and unborn puppies are likely to develop deformities, as these effects are seen in other mammals (11). Water supplies are a likely source of on-going exposure to 1080, wherever poisoned carcasses enter them (12).

Coupled with the risk of poisoned carcasses is the fact that the baits themselves can remain toxic for months, especially when carrot is used, and when baits fall in dry areas.  An example of the on-going risk was 78 sheep that died after grazing an airstrip used to load 1080 poisoned carrot bait, 20 weeks after the operation(13). In Fiordland, some cereal baits “looked quite fresh” after seven weeks, according to a report from DoC field staff (Waitutu 1080 operation, 2010) (14).

Another blow to dog owners from the ERMA re-assessment was its decision to remove the requirement to erect a sign warning of forthcoming poisoning. No prior warning sign at the site is required now  (15).

Historically, concerned officials have attempted to prevent the use of 1080 because of its extreme risk and cruelty to dogs. For example a biologist working for the US Fish & Wildlife Service wrote in 1948: “the spasm period of victims, particularly the canines, seems unduly violent…The severe spasms associated with 1080..[is an] outstanding objection” (16). Another example is a report from 1972 that stated that our own Rabbit Destruction Council had suggested arsenic as a substitute for 1080 due to the danger to farmers’ dogs (17).

Dogs owners are advised to read public notices carefully and to consider all 1080-treated areas as extremely hazardous.

References (note that the ERMA documents with reference numbers can be found on this website) ERMA Documents

(1) Hope, A., Smith M., Temple, W., 2008. Clinical Toxicology Volume 46, abstract 137
(2) ERMA Committee Decision, Appendix B, p 200: 1
(3) A scientific evaluation of the PCE’s views on 1080, this website
(4) ERMA Committee Decision, p 100: 1, 2
(5) ERMA Committee Decision, p 65: 1
(6) ERMA Agency, Appendix C, page 369: 2
(7) ERMA Agency, Appendix C, page 369: 4
(8) Bait and Carcass monitoring Guideline 2011 (DoC document DOCDM649647)
(9) ERMA Agency Appendix N p 727: 4
(10) ERMA Agency Appendix C p 371: 1
(11) Index to ERMA Documents, Health section, this website
(12) ERMA Agency Appendix C, p 370: 4; M, p 700: 2
(13) ERMA Agency, Appendix F, p 727: 4
(14) Waitutu Field Trip November 2910 (DoC Report by P. Dilks & T. Greene)
(15) ERMA Decision, Appendix A, p 167: 3
(16) Submitter to ERMA no. 9074
(17) ERMA Applicants’ References p 15: 1